MEAN_VARIANCE

Detects an anomaly if the metric is not in mean ± n*stdmean and std (standard deviation) are estimated with historical data. The amount of historical data to use is set via lookbackPeriod.

Inputs

"targetProperty": "current": The data on which to perform detection. It should contain the historical data to use for training.

Parameters

namedescriptiondefault value

component.sensitivity

Detection sensitivity. 5 means n=1 sigma. The smaller, the less anomalies are detected.

5

component.lookbackPeriod

Historical period to use to estimate mean and std. In ISO-8601 format. Requires component.monitoringGranularitysee shared parameters. Eg: P14D. If component.lookbackPeriod is not set, component.lookback is used.

 

component.lookback

Deprecated. Prefer component.lookbackPeriod. Number of data points to use to estimate mean and std.

52

component.seasonalityPeriod

Seasonality to consider when computing mean and variance. Possible values are P7D (weekly and smaller periods), P1D (daily and smaller periods), PT0S (no seasonality management). Eg: with P7D, a Monday 12 AM value will be estimated from mean and variance of the previous Monday 12 AM values. Requires component.monitoringGranularitysee shared parameters.

PTOS

component.pattern

Detect as an anomaly if the metric drop, rise or both directions. UPDOWNUP_OR_DOWN.

UP_OR_DOWN

Example

{
  "name": "root",
  "type": "AnomalyDetector",
  "params": {
    "type": "MEAN_VARIANCE",
    "component.monitoringGranularity": "P1D",
    "component.lookbackPeriod": "P14D",
    "component.sensitivity": "5",
    "component.pattern": "UP",
    ...  # shared parameters
  },
  "inputs": [
    {    # data with historical data for mean/std estimation
      "targetProperty": "current",
      "sourcePlanNode": "currentDataFetcher",
      "sourceProperty": "currentOutput"
    }
  ]
}